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A numerical method for inverse thermal analysis of steady-state energy deposition in plate structures is
constructed according to the general physical characteristics of energy deposition within a volume of
material from a beam energy source. This numerical method represents implementation of a general
methodology using basis functions that was introduced previously. The formal structure of the numerical
method presented follows from a specific definition of the inverse heat transfer problem, which is well posed
for inverse analysis of heat deposition processes. This definition is based on the assumption of the availability
of information concerning spatially distributed boundary and constraint values. This information would be
obtained in principle from both experimental measurements obtained in the laboratory, as well as numerical
simulations performed using models having been constructed using basic theory. Experimental measure-
ments include solidification cross sections, thermocouple measurements, and microstructural changes.
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1. Introduction

In what follows a numerical method for inverse analysis of
energy deposition processes is constructed according to the
general physical characteristics of energy deposition within a
volume of material from a beam energy source. This numerical
method represents an implementation of a general methodology
using basis functions that was introduced previously. The
formal structure of the numerical method presented follows
from a specific definition of the inverse heat transfer problem,
which is well posed for inverse analysis of heat deposition
processes. This definition is based on the assumption of the
availability of information concerning spatially distributed
boundary and constraint values. This information would be
obtained in principle from both experimental measurements
obtained in the laboratory, as well as numerical simulations
performed using models having been constructed using basic
theory. Experimental measurements include solidification cross
sections, thermocouple measurements, and microstructural
changes. Numerical simulation data include general tempera-
ture field trend characteristics, response characteristics of
materials to volumetric energy deposition, and the relative
sensitivity of temperature field characteristics to phenomena
occurring on different space and time scales.

The construction of temperature fields according to spatially
and temporally distributed constraint conditions using linear
combinations of optimal basis functions represents a highly

convenient approach to inverse analysis of energy deposition
processes. This approach can be extended, however, using a
numerical methodology that provides even more flexibility for
the construction of temperature fields according to constraint
conditions. This numerical methodology employs linear com-
binations of optimal basis functions for the purpose of
assigning boundary condition values and initial estimates of
the temperature field, which are for subsequent adjustment
according to constraint conditions. Basis functions can be terms
of either analytic or numerical function representations, or both
in linear combination. Analytic function representations are
fundamental solutions to the heat conduction equation for
relatively simple workpiece geometries, e.g., plate structures
having a finite thickness. Numerical function representations
are linear combinations of temperature histories that have been
tabulated and stored as discrete functions.

The organization of the subject areas presented here is as
follows. First, a precise mathematical statement is given of the
inverse problem for which the numerical method is constructed.
In that the range of inverse problems is vast, it is essential to
define precisely the inverse problem to be addressed. This
definition represents a generalization of similar, but more
restrictive, definitions given previously (Ref 1-4). Second, a
general formulation of the numerical method for inverse
analysis of steady-state heat deposition within plate structures
is presented. Third, a discussion is given that concerns various
mathematical aspects of the numerical method presented. This
discussion emphasizes that many aspects of the numerical
method can be further developed with respect to both
algorithmic structure and implementation. Fourth, a prototype
analysis is presented for the purpose of providing an illustrative
example of some specific aspects of the numerical method. In
particular, that the numerical method can provide weld
temperature histories that can be adopted as input data to
various types of computational procedures, such as those for
prediction of solid state phase transformations and their
associated software implementations. And in addition, that
weld temperature histories calculated using this method can be

S.G. Lambrakos, Materials Science and Technology Division, Center
for Computational Materials, Naval Research Laboratory, Code 6390,
Washington, DC; and A.D. Zervaki and G.N. Haidemenopoulos,
Department of Mechanical Engineering, University of Thessaly, 38334
Volos, Greece. Contact e-mail: lambrakos@anvil.nrl.navy.mil.

JMEPEG (2012) 21:180–190 �ASM International
DOI: 10.1007/s11665-011-9963-7 1059-9495/$19.00

180—Volume 21(2) February 2012 Journal of Materials Engineering and Performance



used to construct numerical basis functions, which can be
adopted for inverse analysis of welds corresponding to other
process parameters or of welding processes whose process
conditions are within similar regimes. Finally, a conclusion is
given.

2. Definition of Inverse Heat Deposition Problem

The inverse heat transfer problem (Ref 1-4) may be stated
formally in terms of source functions (or input quantities) and
multidimensional fields (output quantities). The statement of
the inverse problem given here is focused on aspects of inverse
heat deposition problem related to the determination of heat
fluxes via appropriate regularization of their spatial and time
distributions. This statement represents an extension of that
given in Ref 5. In general, the formulation of a heat conductive
system occupying an open bounded domain X with an outer
boundary So and an inner boundary Si involves the parabolic
equation

@Tðx̂; tÞ
@t

þ V̂ ðx̂; tÞ � rTðx̂; tÞ ¼ r � jðx̂; tÞrTðx̂; tÞð Þ þ Qðx̂; tÞ

ðEq 1aÞ

for Tðx̂; tÞ in X� ð0; tf Þ, with initial condition Tðx̂; 0Þ ¼ Taðx̂Þ
in X, and Dirichlet boundary conditions on the inner and outer
boundaries, Si and So, respectively, as follows:

Tðx̂; tÞ ¼ Tiðx̂s; tÞ x̂s 2 Si ðEq 1bÞ

on Si � ð0; tf Þ; and
Tðx̂; tÞ ¼ Toðx̂s; tÞ x̂s 2 So ðEq 1cÞ

on So � ð0; tf Þ. Here x̂ ¼ ðx; y; zÞ is the position vector, tf is the
final time, Tðx̂; tÞ is the temperature field variable, jðx̂; tÞ is the
thermal diffusivity field variable, Taðx̂Þ, Tiðx̂; tÞ, and Toðx̂; tÞ
are specified functions, and Qðx̂; tÞ is the volumetric heat
source function. Determination of the temperature field via
solution of Eq 1a to 1c defines the direct initial-boundary value
problem. The inverse problem considered here is that of recon-
structing the temperature field Tðx̂; tÞ for all time t 2 ½0; tf �
based on available information concerning the functions de-
fined by Eq 1b and 1c. This information must be acquired
either experimentally or via direct numerical simulation.

Following the inverse analysis approach, a parametric
representation based on a physical model provides a means
for the inclusion of information concerning the physical
characteristics of a given energy deposition process. It then
follows that for heat deposition processes involving the
deposition of heat within a bounded region of finite volume,
consistent parametric representations of the temperature field
are given by

Tðx̂; tÞ ¼ TA þ
XNk

k¼1
wkTkðx̂; x̂k ; j; tÞ and Tðx̂cn; tcnÞ ¼ Tc

n

ðEq 2Þ

where Tkðx̂; x̂k ; j; tÞ represent an effectively complete set of
basis functions for representation of the temperature field
within the region bounded by surfaces Si and So. The quantity
TA is the ambient temperature of the workpiece and the
locations x̂cn and temperature values Tc

n specify constraint

conditions on the temperature field. The functions
Tkðx̂; x̂k ; j; tÞ represent an optimal, or effectively complete, ba-
sis set of functions for given boundary conditions and material
properties. The quantities x

_

k ¼ ðxk ; yk ; zkÞ; k ¼ 1; . . . ;Nk , are
the locations of the elemental source or boundary elements.
Selection of an optimal set of basis functions is based on a
consideration of the characteristic model and data spaces of
heat deposition processes and subsequently isolating those re-
gions of the model space corresponding to parameterizations
that are both physically consistent and sufficiently general in
terms of their mathematical representation and mapping from
data to model space (Ref 6). Although heat deposition pro-
cesses may be characterized by complex coupling between the
heat source and the workpiece, as well as complex geometries
associated with either the workpiece or the deposition process,
in terms of inverse analysis the general functional forms of
the temperature fields associated with all such processes are
within a restricted class of functions, i.e., optimal sets of func-
tions. Accordingly, a sufficiently optimal set of functions are
the analytic solutions to heat conduction equation for a finite
set of boundary conditions (Ref 7). A parameterization based
on this set is both sufficiently general and convenient relative
to optimization.

The formal procedure underlying the inverse method
considered here entails the adjustment of the temperature field
defined over the entire spatial region of the sample volume at a
given time t. This approach defines an optimization procedure
where the temperature field spanning the spatial region of the
sample volume is adopted as the quantity to be optimized.
Constraint conditions are imposed on the temperature field
spanning the bounded spatial domain of the workpiece by
minimization of the objective function defined by

ZT ¼
XN

n¼1
wn Tðx̂cn; tcnÞ � Tc

n

� �2
; ðEq 3Þ

where Tc
n is the target temperature for position

x̂cn ¼ ðxcn; ycn; zcnÞ. The input of information into the inverse
model defined by Eq 1 to 3, i.e., the mapping from data to
model space, is effected by: the assignment of individual con-
straint values to the quantities Tc

n ; the form of the basis func-
tions adopted for parametric representation; and specifying
the shapes of the inner and outer boundaries, Si and So,
respectively, which bound the temperature field within a spec-
ified region of the workpiece. The constraint conditions and
basis functions, i.e., Tðx̂cn; tcnÞ ¼ Tc

n and Tkðx̂; x̂k ; j; tÞ; respec-
tively, provide for the inclusion of information that can be
obtained from both laboratory and numerical experiments
(Fig. 1).

Fig. 1 Schematic representation of inner and outer boundaries of
temperature field that define inverse steady-state heat deposition
problem
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The existence of a convenient and general parameterization
of inner boundary surfaces, Tðx̂sÞ, x̂s 2 Si, bounding the
temperature fields associated with heat deposition processes is
conjectured based on the obvious fact that all heat deposition
processes are characterized by thermal and energy deposition
profiles whose general form can be represented by a small class
of geometric shapes. This conjecture is plausible and is based
on the fact that the observed volumetric distributions of energy
from all types of heat deposition processes, within the inner
boundary Si of their associated temperature fields, can be
represented by linear combinations of the basis functions
having the form of a modified Beer Lambert Law. These
arguments establish a plausible foundation for the existence of
a relatively optimal and general parametric representation
Tðx̂; j;V ; l; Tbðx̂sÞ; x̂s 2 Si; SoÞ for inverse analysis of heat
deposition processes. In doing so, referring to Fig. 2, the
inverse problem defined by the mapping

Cðx̂k ; tÞ; j 7! Tðx̂; tÞ ðEq 4aÞ

is replaced by the inverse problem defined by the mapping

Cðx̂k ; tÞ; j 7! Si; So 7! Tðx̂; tÞ ðEq 4bÞ

The inverse problem as defined by Eq 4b can be extended to
include systems that are characterized by incomplete informa-
tion concerning the diffusivity j, as well as any nonlinear
dependence of j on temperature. This follows in that the
inverse problem defined by Eq 4b adopts the quantities Cðx̂k ; tÞ
and j as surface generators. Accordingly, the mapping defined

by Eq 4b can be generalized to include discrete distributions of
diffusivities, i.e.,

Cðx̂k ; tÞ; jk 7! Si; So 7!Tðx̂; tÞ ðEq 4cÞ

Given an inverse analysis formulation that is defined by the
sequence of mappings Eq 4c, relatively interesting sensitivity
issues are observed to follow. The mathematical properties
underlying these sensitivity issues are the same as those
responsible for the ill posedness of many inverse analysis
procedures based on the mapping Eq 4a. That is to say, those
filter properties of diffusion processes that tend to make the
temperature field Tðx̂; tÞ insensitive to details of the shape of
the source distribution Cðx̂k ; tÞ, tend to make Tðx̂; tÞ insensitive
to details of the shapes of Si and So. This insensitivity to details
of the shapes of Si and So, e.g., the shape of the solidification
boundary, implies that a general parametric representation of
the inner and outer boundaries can in principle be formulated in
terms of a reasonably convenient mathematical form. For these
analyses the heat source distribution assumes the role of a
boundary surface generator. This interpretation of Cðx̂k ; tÞ
permits convenient parameterization of Si and So.

3. Numerical Methodology

Presented in this section is a numerical method for inverse
analysis of heat deposition processes. With respect to the

Fig. 2 (a) General form of discrete distribution of energy sources for generation of inner boundary Si and corresponding temperature field. (b)
Conveniently adjustable form of discrete distribution of energy sources for generation of inner boundary Si and corresponding temperature field
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numerical method presented, a set of basis functions is
considered effectively complete if these functions provide
reasonably optimal fitting to boundary and constraint condi-
tions. Before proceeding it is significant to note that in
principle the set of basis functions adopted by Eq 2 can be
defined in terms of either analytical or numerical function
representations. The numerical method that is developed here
employs both analytical and numerical function representa-
tions of basis function adopted for the calculation of
temperature fields within bounded domains within which
constraint conditions are specified. In addition, the interrela-
tion between analytical and numerical basis function repre-
sentations is an important aspect of the numerical method.
Proceeding, a consistent representation Eq 2 of the tempera-
ture field for heat deposition within structures characterized by
a finite thickness, in terms of analytical basis functions, is
given by

Tðx̂; tÞ ¼ TA þ
XNk

k¼1

XNt

n¼1
Cðx̂kÞGðx̂; x̂k ; j;V ; nDtÞ ðEq 5Þ

where

Gðx̂; x̂k ; j;V ; tÞ

¼ 1

t
exp �ðx� xk � VtÞ2 þ ðy� ykÞ2

4jt

" #

� 1þ 2
X1

m¼1
exp � jm2p2t

l2

� �
cos

mpz
l

h i
cos

mpzk
l

h i( )

ðEq 6Þ

and

Cðx̂Þ ¼
XNk

k¼1
Qðx̂kÞdðx̂� x̂kÞ ðEq 7Þ

The quantities j, V, and l are the thermal diffusivity,
welding speed, and plate thickness, respectively. Referring to
Eq 7, it is significant to note that with respect to numerical
methods, all analytical representations of the energy source
function are in fact a precursor to some type of discrete
representation for subsequent numerical implementation. The
procedure for inverse analysis defined by Eq 5 to 7 entails
adjustment of the parameters Cðx̂kÞ, x̂k , and Dt defined over
the entire spatial region of the workpiece. Shown in Fig. 2
is schematic representations of the discrete source distribu-
tions corresponding to the parameterizations defined by
Eq 7.

Next, it should be noted that the linear combination
of basis functions defined by Eq 5 can be extended to
include an implicit specification of an average diffusivity
field jðx̂Þh i, which is consistent with the sequence of
mappings defined by Eq 4c. This linear combination is of the
form

Tðx̂; tÞ ¼ TA þ
XNk

k¼1

XNt

n¼1
Cðx̂k ; jkÞGðx̂; x̂k ; jk ; nDtÞ ðEq 8Þ

Having generated temperature histories at discrete transverse
locations (ym, zm), a consistent representation given by Eq 2 of
the temperature field for heat deposition within structures
characterized by a finite thickness, in terms of numerical basis
functions, is given by

Tðx̂; tÞ ¼ TA þ
XNm

m¼1
AmTmðx̂; ym; zm; j; l;V ; Si; SoÞ ðEq 9Þ

where (ym, zm) are discrete transverse locations at which stea-
dy-state temperature histories have been tabulated and thus
provide a numerical basis function representation.

4. Construction of A Parametric Field
Representation for Steady-State Energy
Deposition

The set of basis functions presented above provide a general
parametric representation for inverse analysis of welding
processes. Given these basis functions, the temperature field
associated with any given process for steady-state energy
deposition within plate structures is completely specified by a
given set of inner and outer bounding surfaces Si and So,
respectively, the temperature distributions over these surfaces, a
specified average diffusivity, j, speed of deposition, V, and the
thickness, l, of the workpiece. Accordingly, it follows that one
is able to define a multidimensional temperature field
Tðx̂; t; j;V ; l; Tsðx̂sÞ; x̂s 2 Si; SoÞ: It is significant to note,
however, that this multidimensional field provides a parametric
representation, i.e., parameterization, of welding processes to
the extent that any of the different possible types of boundary
surfaces Si and So, associated with these processes can be
represented conveniently and an average j can be specified.
This is certainly the case since the volumetric source function
Cðx̂kÞ assumes the role of a boundary surface generator, and
therefore provides a framework for parameterization of Si and
So using the basis functions given above.

A general procedure for construction of a multidimensional
temperature field Tðx̂; t; j;V ; l; Tsðx̂sÞ; x̂s 2 Si; SoÞ can now be
described using the illustrative example that follows. The basis
of this procedure is that for welding processes associated with a
given class of materials, e.g., metals, the range of different
possible shapes of inner boundary surfaces Si is denumerably
finite and that diffusivities and workpiece dimensions are
bounded within a reasonable range of values. Accordingly, a
general procedure for construction of Tðx̂; t; j;V ; l; Tsðx̂sÞ;
x̂s 2 Si; SoÞ:, which can be interpreted as evolutionary, is based
on the systematic accumulation of results of inverse analyses
applied to various types of experimental measurements and
numerical simulations. This procedure can be described with
reference to Fig. 3 and 4 which describes its relationship to the
calculation of temperature fields for welding processes using
inverse analysis in general. Referring to this figure, it is to be
further noted that the results of various inverse analyses, which
involve different types of deposition processes can be stored. In
addition, as in the illustrative example that follows, for a given
inverse analysis where Si has been specified, one can vary j and
l over their entire range of possible values and then store the
associated temperature fields. A natural consequence of the
finite range of shapes of Si and of values of j and l is that the
stored temperature fields can evolve into a discrete multidimen-
sional temperature field that is sufficiently dense for interpola-
tion between field values. Again referring to Fig. 3, it can be
noted that a discrete multidimensional temperature field, having
been constructed and sufficiently dense, can be used for
objective function minimization as an alternative to parametric
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representation using ‘‘analytical’’ basis functions. It follows that
an alternative parameterization to that using the basis functions
defined by Eq 6 to 9 is given by

Tðx̂; tÞ ¼ TA þ
XNm

m¼1
AmTmðx̂; ym; zm; j; l;V ; Sit; Sil; Sits; SoÞ and

T x̂cn; t
c
n; j

� �
¼ Tc

n (Eq 10)

where Ai, i = 1, …, Ni, are weight coefficients for effecting
interpolation within the multidimensional space define by
ðx̂; t; j;V ; l; Sit; Sil; SitsÞ. As with the basis functions defined
by Eq 8 and 9, which are based on a generalized function
representation, the functions Tðx̂; t; j;V ; l; Sit; Sil; SitsÞ provide
for the specification of a numerical basis function representa-
tion of the temperature field.

According to the procedure defined by Fig. 3 and 4, the
basis function expansions given by Eq 6 and 10 can be
interpreted as two equivalent parametric representations, each
of which is associated with four parameters. In the case of Eq 6,
which is in terms of analytic basis functions, these parameters
are Cðx̂k ; tÞ, x̂k , tk and diffusivity. In the case of Eq 10, which is
in terms of numerical basis functions, these parameters are the
welding speed, thickness of workpiece, shape of inner bound-
ary Si and diffusivity. Given in the next section is an example of
a general procedure, which follows from the equivalence of
Eq 6 and 10, for construction of a parametric temperature field
in terms of numerical basis functions.

It is significant to note that the constraint conditions defined
by the three cross section surfaces S1, S2, and S3 provide
sufficient bounding of the calculated temperature field to the
extent that the entire three-dimensional shape of the of the
solidification boundary is constrained to be within a reasonable
approximation. That is to say, although the calculated three-
dimensional shape of the solidification boundary is not in
principle unique, its range of variability is expected to be so
very limited that it is essentially unique for all practical
purposes.

5. Construction of Numerical Basis Functions

The general procedure for construction of numerical basis
functions entails calculation of the steady-state temperature
field for a specified range of sizes and shapes of the inner
surface boundary Si for a given welding, or in general, heat
deposition process. In the case of welding processes, rather than
constructing a temperature field that is a function of a closed
surface Si, a more realistic construction should consider
temperature field dependence on the experimentally observable
solidification boundaries Sit, Sil, and Sits that are shown in
Fig. 3. Accordingly, the example of a multidimensional
temperature field construction presented here adopts the laser
beam welds, whose cross sections are shown in Fig. 5 to 7 as
three different sets of values for Sit, Sil, and Sits that are
relatively close to each other in parameter space. It is significant
to note that for the present analysis the exact focal points of the
electron beams for the welds are not relevant. The goal of the
present analysis is simply to adopt a set of process parameters
that produce sets of values for Sit, Sil, and Sits that are relatively
close. For this system, the parameter values assumed are
j = 1.889 10�5 Æm2/s, TM = 567 �C (solidus temperature of
2198-T8 Aluminum) l = 3.8 mm and V = 3.33 cm/s. The
upstream boundary constraints on the temperature field,
Tc = TM for (yc, zc) defined in Eq 2, are given in Table 1.
Shown in Fig. 8 to 10 are different planar slices of the time-
dependent temperature field that have been calculated accord-
ing to the constraint conditions given in Table 1 for energy
surface deposition of 103 J/mm.

The general procedure for constructing a multidimensional
temperature field for a given welding process follows with
reference to Fig. 5 to 7. Accordingly, these temperature
histories represent two hypersurfaces that are close to each
other in the parameter space for Tðx̂; t; j;V ; l; Sit; Sil; SitsÞ.
Construction of a multidimensional temperature field is effected
by adjustment of process parameters such that Sit, Sil, and Sits
span a range of values that include all process conditions. For
each set of values of Sit, Sil, and Sits, temperature histories
Tðx̂; t; j;V ; l; Sit; Sil; SitsÞ are calculated for specified values of
j, V, and l. This procedure is then followed for incremental
changes of the parameters j, V, and l.

6. Discussion

It is important to note that Eq 3 to 6 can be interpreted
from the view point of numerical methods, rather than that of
a discrete approximate representation of an analytical solu-
tion to the heat conduction equation. With respect to this

Fig. 3 Temperature field parameterization with respect to experi-
mentally observable solidification boundaries for construction of
numerical basis functions

Fig. 4 General procedure for calculation of temperature fields for
energy deposition processes using inverse analysis
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Fig. 5 Laser beam weld of Al 2198-T8 for energy deposition of 103 J/mm and beam focal point at 1 mm above top surface of workpiece.
(a) Transverse cross section. (b) Top surface of workpiece. (c) Longitudinal cross section at symmetry plane. Beam power and welding speed
are 3441 W and 2 m/min, respectively

Fig. 6 Laser beam weld of Al 2198-T8 for energy deposition of 103 J/mm and beam focal point at 1 mm below top surface of workpiece.
(a) Transverse cross section. (b) Top surface of workpiece. (c) Longitudinal cross section at symmetry plane. Beam power and welding speed
are 3441 W and 2 m/min, respectively
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interpretation, Eq 3 to 6, given the condition defined by Eq 6,
represents a discrete form of Eq 9 that is unconditionally
stable with respect to timestep size.

The starting point for the construction of a numerical
method for calculating time-dependent temperature histories for
any given energy deposition process is a discrete representation
of the heat conduction equation. In terms of finite differences,
discrete representations of this equation, for calculation of time-
dependent temperature fields, fall within two classes, explicit or
implicit schemes (see Ref 8 for further discussion). These
classes are defined according to numerical stability conditions,
which determine the nature of error propagation as a function of
time. Explicit schemes are characterized by relatively strict

stability conditions on the choice of discrete timestep size.
Implicit schemes are characterized by unconditional stability
with respect to timestep size. With respect to explicit schemes,
owing to a well-defined criterion for numerical stability, there
exist an a priori measure, or rather sense, of error propagation
within the calculated temperature fields as a function of time.
This a priori measure of accuracy for calculated temperature
fields comes at the very high price of very small timestep sizes,
which renders many heat transfer problems intractable with
respect to numerical simulation via explicit schemes. Implicit
schemes, owing to their unconditional stability with respect to
timestep size, are well posed for numerical simulations of heat
transfer over time and space scales that are of practical
significance relative to process modeling. In general, however,
it is difficult to access the accuracy of these schemes in that
there does not exist rigorous criteria for error propagation.
Typically, implicit schemes for discrete representation of the
heat conduction equation are structured in terms of linear-
algebraic formulations. These formulations provide a frame-
work for the construction of various types of algorithms for
purposes of numerical simulation.

It follows that, in terms of the classification of discrete
representations of the heat conduction equation, the parametric
representations Eq 3 to 5, which are constructed using linear
combinations of analytical basis functions, provide an uncon-
ditionally stable method for calculation of time-dependent
temperature fields. With the understanding that Eq 1 to 5
represents an unconditionally stable method for calculation of
temperature histories, the problem of establishing some assess-
ment of error propagation as a function of time becomes of
relevance.

Fig. 7 Laser beam weld of Al 2198-T8 for energy deposition of 103 J/mm and beam focal point at top surface of workpiece. (a) Transverse
cross section. (b) Top surface of workpiece. (c) Longitudinal cross section at symmetry plane. Beam power and welding speed are 3441 W and
2 m/min, respectively

Table 1 Temperature field constraint conditions
at positions (yc, zc) on transverse cross sections
of welds at solidification boundaries

Focal point 1 mm 21 mm 0 mm
zc, mm 2yc, mm 2yc, mm 2yc, mm

0.0 4.25 4.0 4.375
0.5 3.875 3.875 4.25
1.0 3.25 3.5 3.75
1.5 2.125 2.75 2.75
2.0 1.875 2.175 2.375
2.5 1.625 1.875 2.125
3.0 1.5 1.75 1.875
3.5 2.0
3.8 1.5 1.875 2.125
Figure 5 6 7
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At this stage, it is important to indicate that the classifica-
tions explicit and implicit, for discrete representations of the
heat conduction equation, are motivated primarily by a direct-
problem perspective for numerical modeling of physical
processes. With respect to this perspective, the discrete
representation Eq 3 to 5 can be applied for qualitative analysis
of physical characteristics of a given energy deposition process.
This follows in that the calculated temperature field, although
possibly not quantitatively accurate for relatively large time
steps, is able to ‘‘shadow’’ the actual field to the extent that all
qualitative trend features are preserved. This is a general
characteristic of many implicit schemes. Accordingly, selection
of an appropriate timestep size for qualitative accuracy can be
verified by examination of the extent to which a calculated
solution can shadow a physical consistent solution.

In principle, with respect to an inverse-problem perspective
for numerical modeling of energy deposition processes, the
discrete representation Eq 2 to 5 can be applied for quantitative
analysis. This follows in that the inclusion of Eq 2 provides an
interesting property with respect to error propagation. Referring
to Eq 2, one notes that the calculated temperature field, at any
given time, can be ‘‘corrected’’ according to values of target
temperatures Tc

n . It follows that by inclusion of Eq 2, which is

with respect to an inverse-problem perspective, the discrete
representation Eq 2 to 5 is equipped with a predictor-corrector
property for calculating the time-dependent temperature field.
That is to say, any error propagation that is related to timestep
size, tending to cause the calculated temperature field to deviate
from its correct values, is corrected for within a specified
tolerance ZT < e, at those times when Eq 2 is applied. Within
the context of inverse analysis, the system is assumed
overdetermined to the extent that various approximations may
be introduced for further development of the numerical method.
This follows that the rigorous foundation of the method is
constrained parameter optimization in the least-squares sense.
Accordingly, in principle, various types of approximations are
justified in that errors that are introduced will be compensated
for via parameter adjustment with respect to constraint
conditions based on data.

Next, the representation of the temperature field using a
linear combination of numerical basis functions as defined by
Eq 10 will in general be effected using numerical procedures
for the determination of the weighting coefficients associated
with this linear expansion. In principle, there exist many
procedures for accomplishing this task, and which of these is
optimal remains for further investigation. The construction of

Fig. 8 Two-dimensional slices of three-dimensional temperature field (�C) calculated using cross section information shown in Fig. 5.
(a) Transverse cross section. (b) Top surface of workpiece. (c) Longitudinal cross section at symmetry plane
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numerical basis functions presented in the previous section
represents one procedure for this task, which demonstrates both
the construction and the use of numerical basis functions for
calculation of temperature fields. This can be seen with reference
to Table 2 to 4. First, referring to Table 2, it is to be noted that the
values of the source function Cðx̂kÞ are determined by iterative
adjustment until the specified constraint conditions given in
Table 1 are satisfied within a reasonable tolerance according to
Eq 3. This procedure represents construction of a numerical
basis function. Next, it is to be noted that the values of the source
function given in Table 3 and 4 are not determined according to
the specified constraint conditions given in Table 1 only. The
procedure for calculation of these values entails small adjust-
ments of the coefficients Ak defined in the expression

Tðx̂; tÞ ¼ TA þ
XNk

k¼1

XNt

n¼1
AkCðx̂kÞGðx̂; x̂k ; j; nDtÞ; ðEq 11Þ

where the source function Cðx̂kÞ is given in Table 2. It fol-
lows, therefore, that calculation of the temperature fields
shown in Fig. 9 and 10 for the welds whose cross sections
are shown in Fig. 6 and 7 is in terms of linear combinations
of numerical basis functions whose values are specified by
Table 2.

7. Conclusion

One objective of this report is to describe a numerical
method for inverse thermal analysis of steady-state energy
deposition in plate structures. This method employs different
types of basis functions for parametric representation of steady-
state temperature fields. The specific algorithmic aspects of
constructing temperature fields by means of this parameteriza-
tion are for further investigation. This report represents a
continuation of the attempt to make quantitative a highly
qualitative experience having occurred over the course of
inverse analyses applied to various types of energy deposition
processes. This experience is associated with the fact that in
many cases where inverse analysis was applied to a given
welding process for a given set of process parameters and alloy,
following procedures similar to that defined here, the temper-
ature field having been calculated was very similar to one
having been calculated previously for a significantly different
welding process, set of process parameters and alloy. Accord-
ingly, this experience establishes the existence of a multidi-
mensional temperature field Tðx̂; t; j;V ; l; Tsðx̂sÞ; x̂s 2 Si; SoÞ
for representation of welding processes in general, especially in
the case of restricted geometries such as those associated with

Fig. 9 Two-dimensional slices of three-dimensional temperature field (�C) calculated using cross section information shown in Fig. 6. (a)
Transverse cross section. (b) Top surface of workpiece. (c) Longitudinal cross section at symmetry plane
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plate structures. Another objective of this report was to
establish rigorous conditions for the application of inverse
thermal analysis using basis-function representations and
associated parameterizations. Accordingly, the statement of

the inverse heat deposition problem presented here provides a
rigorous foundation for the validity and well posedness of the
inverse analysis of welding processes, and consequently,
relatively strict conditions for its application.

Fig. 10 Two-dimensional slices of three-dimensional temperature (�C) field calculated using cross section information shown in Fig. 7.
(a) Transverse cross section. (b) Top surface of workpiece. (c) Longitudinal cross section at symmetry plane

Table 2 Volumetric source function Cðx̂kÞ calculated
according to constraint conditions specified by weld cross
sections shown in Fig. 5, where Dl = 3.8/60 mm

k Cðx̂kÞ/2.9 xk (Dl) yk (Dl) zk (Dl)

1 0.042 0.0 0.0 3.0
2 0.041 0.0 0.0 5.0
3 0.038 0.0 0.0 7.0
4 0.03 0.0 0.0 9.0
5 0.03 0.0 0.0 11.0
6 0.03 0.0 0.0 13.0

k Cðx̂kÞ/1.3 xk (Dl) yk (Dl) zk (Dl)

7 0.1 4.0 0.0 0.0
8 0.1 �4.0 0.0 0.0
9 0.1 0.0 4.0 0.0
10 0.1 0.0 �4.0 0.0

Table 3 Volumetric source function Cðx̂kÞ calculated
according to constraint conditions specified by weld cross
sections shown in Fig. 6, where Dl = 3.8/60 mm

k Cðx̂kÞ/2.9 xk (Dl) yk (Dl) zk (Dl)

1 0.015 0.0 0.0 3.0
2 0.015 0.0 0.0 5.0
3 0.025 0.0 0.0 7.0
4 0.027 0.0 0.0 9.0
5 0.027 0.0 0.0 11.0
6 0.025 0.0 0.0 13.0

k Cðx̂kÞ/1.3 xk (Dl) yk (Dl) zk (Dl)

7 0.1 4.0 0.0 0.0
8 0.1 �4.0 0.0 0.0
9 0.1 0.0 4.0 0.0
10 0.1 0.0 �4.0 0.0
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